矩形的判定教学反思怎么写?

本节课主要讲解的是矩形的性质与判定,本节课一共分为5个环节 。在环节一知识回顾,由平行四边形入手,通过直观观察平行四边形与矩形内角的异同以及观察平行四边形与矩形的形状特点,这是落实核心价值观直观想象的过程,学生建立逻辑关系——平行四边形形状与边角大小之间的关系(直观想象是显性的,逻辑推理是隐形的) 。在环节二探索活动一,利用橡皮筋套木框改变橡皮筋的松紧长短程度从而改变平行四边形的形状,观察平行四边形演变为矩形的过程,这是通过直观形象产生疑惑,有想法,进而升华为逻辑推理——改变平行四边形的对角线长短关系引起角的变化,这个变化过程中当一个角是直角时将平行四边形演变为矩形,这是落实显性的直观形象与隐性的逻辑推理的过程 。在环节三探索活动二,利用小芳画矩形的过程引入矩形的第二种判别方法,同样小芳画的过程是学生进行直观形象的过程,小芳画出来的学生观察确实是一个矩形,进而反问学生为什么是?这就是逻辑推理过程了,也是数学抽象的过程了,通过数学逻辑证明,得出确实是,从而抽象出——三个角都是直角的四边形是矩形 。这个环节落实的数学学科核心素养显性的是直观想象,隐性的是逻辑推理,深入挖掘出数学抽象也是在这节课落实的素养 。在环节四议一议中,只利用一根绳子,是否能判断出平行四边形、矩形、菱形?这是一个开放性的问题,也就是脱离角是否可以判断四边形的形状?直观形象这是首先落实到的核心素养,进而学生考虑四边形只考虑边的特点,不考虑角,是否可以判断,逻辑推理过程在这个过程中落实的淋漓尽致,其实质数学抽象——将绳子与边结合起来,这也是这个环节不可小视的核心素养 。
经过本节课的讲解,深感落实数学学科核心素养在数学课堂中的重要作用,直观想象是本节课最显性的核心素养,而逻辑推理是在直观想象后升华的部分,数学抽象很多人或许会忽视,但会发现,在数学学科中,数学抽象虽然看不到也讲解不到,但在知识的升华过程中数学抽象才会产生质的飞跃,脱离现实数据抽象出数学真知 。

矩形的判定教学反思怎么写?


《矩形的判定》一课,是在学习了《平行四边形的判定》以后提出的 。因为有了学习平行四边形的判定方法做为基础,所以本节课采用了“类比学习”的方法,引导学生通过“类比学习”的方法进行新知的探索与学习 。在设计中,通过平行四边形的演示活动引出主题“矩形”,运用回忆的方法,对“矩形的定义及性质”进行了预备知识检测,再对矩形的判定方法进行猜想与验证,紧接下来设计了几道练习题让学生学以致用,最后用一流程图进行了小结 。