世界七大数学难题|盘点世界七大数学难题( 二 )


与费尔马猜想时隔三个半世纪以上才被解决,哥德巴赫猜想历经两个半世纪以上屹立不倒相比,黎曼猜想只有一个半世纪百思特网的纪录还差得很远,但它在数学上的重要性要远远超过这两个大众知名度更高的猜想 。黎曼猜想是当今数学界最重要的数学难题 。
杨-米尔斯规范场存在性和质量间隔假设世界七大数学难题|盘点世界七大数学难题


量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的 。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系 。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波 。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解 。百思特网特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量间隔”(mass gap)假设,从来没有得到一个数学上令人满意的证实 。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念 。
NS方程解的存在性与光滑性十九世纪,一些科学家看到了理论流体与工程实际相差太远,试图给欧拉的理想流体运动方程加上摩擦力项 。纳维(Navier 1827),柯西(Cauchy 1828),泊松(Poisson1829),圣维南(St.Venant 1843)和斯托克斯(Stokes 1845)分别以自己不同的方式对欧拉方程作了修正 。Stokes首次采用动力粘性系数 。现在,这些粘性流体的基本方程称为Navier-Stokes 方程 。但是由于N-S方程是数学中最为难解的非线性方程中的一类,寻求它的精确解是非常困难的事 。直至今天,大约也只有70多个精确解 。
Navier Stokes(纳维叶-斯托克斯)方程是流体力学中描述粘性牛顿流体的方程,是目前为止尚未被完全解决的方程,目前只有大约一百多个特解被解出来,是最复杂的方程之一 。
贝赫和斯维讷通-戴尔猜想贝赫和斯维讷通-戴尔猜想(Birch and Swinnerton-Dyer Conjecture)指的是对有理数域上的任一椭圆曲线, 其L函数在1的化零阶等于此曲线上有理点构成的Abel群的秩 。
马蒂雅谢维奇(Yu. V. Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方程来确定这样的方法是否有一个整数解 。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态 。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点 。