文章插图
sinx:上半边正,下半边负;
cosx:左半边负,右半边正;
tanx:1,3象限正,2,4象限负;
cotx:1,3象限正,2,4象限负 。
是始边落在轴正方向 , 终边按逆时针方向落在坐标平面内的象限角
①第一象限角:
②第二象限角:
③第三象限角:
④第四象限角:
其中,。
扩展资料:
正弦值在随角度增大(减?。┒龃螅跣 。? 随角度增大(减?。┒跣 。ㄔ龃螅?
余弦值在随角度增大(减?。┒龃螅跣 。? 随角度增大(减?。┒跣 。ㄔ龃螅?
正切值在随角度增大(减?。┒龃螅跣 。?
余切值在随角度增大(减?。┒跣 。ㄔ龃螅?
正割值在随着角度的增大(或减?。┒龃螅ɑ蚣跣 。?
余割值在随着角度的增大(或减?。┒跣 。ɑ蛟龃螅?。
注:以上其他情况可类推,参考第五项:几何性质 。
在研究三角函数时,我们常在直角坐标系内讨论角,使角的顶点与坐标原点重合,角的始边在x轴的正半轴上,角的终边落在第几象限内,就称这个角是第几象限角.
k·360°+α(k∈Z)它是与α角的终边相同的角,(k=0时,就是α本身),凡是终边相同的两个角,则它们之差一定是360°的整数倍,应该注意的是:两个相等的角终边一定相同,而有相同的终边的两个角则不一定相等 , 也就是说,终边相同是两个角相等的必要条件,而不是充分条件.
还应该注意到:A={x|x=k·360°+30°,k∈Z}与集合B={x|x=k·360°-330° , k∈Z}是相等的集合.
相应的与x轴正方向终边相同的角的集合是{x|x=k·360° , k∈Z};与x轴负方向终边相同的角的集合是{x|x=k·360°+180° , k∈Z};与y轴正方向终边相同的角的集合是{x|x=k·360°+90°,k∈Z};与y轴负方向终边相同的角的集合是{x|x=k·360°+270° , k∈Z}
sinx:1 , 2象限正;3,4象限负;
cosx:2,3象限负;1,4象限正;
tanx:1,3象限正;2,4象限负;
cotx:1 , 3象限正;2,4象限负 。
简记口诀:一全,二正弦,三正切,四余弦 。
扩展资料:
常用公式
公式一
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)=-cosα
tan(π+α)= tanα
- 恬字粤语怎么读
- 形体课和舞蹈课的区别
- 龙眼上有白色的还能吃吗?
- 逸动大灯买什么样的好
- 解馋不发胖的15种水果
- 如何正确念地藏经
- jfinal save 方法 报错
- 唐人街探案3谁是真正的q
- 肚子胀刮痧行吗?