常用的三角函数公式集合
三角函数是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数 。也可以等价地用与单位圆有关的各种线段的长度来定义 。常见的三角函数包括正弦函数、余弦函数和正切函数 。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等 。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途 。
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A = 2tanA/(1-tan2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin2 A
=2Cos2 A—1
=1—2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)3;
cos3A = 4(cosA)3 -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
半角公式
sin(A/2) = √{(1--cosA)/2}
cos(A/2) = √{(1+cosA)/2}
tan(A/2) = √{(1--cosA)/(1+cosA)}
cot(A/2) = √{(1+cosA)/(1-cosA)} ?
tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)
和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
积化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]2}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]2}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)
其它公式
a?sin(a)+b?cos(a) = [√(a2+b2)]*sin(a+c) [其中,tan(c)=b/a]
a?sin(a)-b?cos(a) = [√(a2+b2)]*cos(a-c) [其中,tan(c)=a/b]
1+sin(a) = [sin(a/2)+cos(a/2)]2
1-sin(a) = [sin(a/2)-cos(a/2)]2
【常用的三角函数公式集合】
常用公式A?sin(ωt+θ)+ B?sin(ωt+φ) =
√{(A2 +B2 +2ABcos(θ-φ)} ? sin{ ωt + arcsin[ (A?sinθ+B?sinφ) / √{A2 +B2; +2ABcos(θ-φ)} }
√表示根号,包括{……}中的内容
- 面霜|好用的面霜公认最好用学生党,口碑最好十大面霜排行榜
- 牙膏|婴儿牙膏什么牌子好用,安全可食用的婴儿牙膏排行榜
- 纸尿裤|有哪些好用的透气纸尿裤,透气纸尿裤排行榜
- 好用手机|十大好用的手机排名 性能最好的手机前十位
- 结婚|结婚三金日常生活佩戴吗
- 兔子|兔子是冬眠动物还是不冬眠动物
- 女朋友|女朋友穿的用的都很贵怎么办
- lv|lv新包五金件有划痕正常吗
- 哈密瓜|哈密瓜会打催熟剂吗
- 精华|好用的十大美白精华排名,美白精华推荐