高二数学寒假作业|高二寒假作业来了,爽歪歪( 二 )




温故知新 第七天 直线与圆锥曲线的位置关系
1.直线4kx-4y-k=0与抛物线y2=x交于A,B两点,若|AB|=4,则弦AB的中点到直线x+2(1)=0的距离等于 ().
A.4(7) B.2 C.4(9) D.4
2.设斜率为2(2)的直线l与椭圆a2(x2)+b2(y2)=1(a>b>0)交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为().
A.3(3) B.2(1) C.2(2) D.3(1)
3.椭圆2(x2)+y2=1的弦被点2(1)平分,则这条弦所在的直线方程是________.
4.在圆x2+y2=4上任取一点P,过点P作x轴的垂线段,D为垂足,点M在线段PD上,且|DP|=|DM|,点P在圆上运动.
(1)求点M的轨迹方程;
(2)过定点C(-1,0)的直线与点M的轨迹交于A,B两点,在x轴上是否存在点N,使→(NA)→(NB)为常数,若存在,求出点N的坐标;若不存在,请说明理由.


温故知新 第八天 曲线与方程
1.若点P到直线x=-1的距离比它到点(2,0)的距离小1,则点P的轨迹为 ().
A.圆 B.椭圆 C.双曲线 D.抛物线
2.设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为 ().
A.21(4x2)-25(4y2)=1 B.21(4x2)+25(4y2)=1
C.25(4x2)-21(4y2)=1 D.25(4x2)+21(4y2)=1
3.P是椭圆a2(x2)+b2(y2)=1上的任意一点,F1、F2是它的两个焦点,O为坐标原点,→(OQ)=→(PF1)+→(PF2),则动点Q的轨迹方程是________.
4.设椭圆方程为x2+4(y2)=1,过点M(0,1)的直线l交椭圆于A,B两点,O为坐标原点,点P满足→(OP)=2(1)(→(OA)+→(OB)),点N的坐标为2(1),当直线l绕点M旋转时,求:
(1)动点P的轨迹方程;
(2)|→(NP)|的最大值,最小值.


温故知新 第九天 框图与算法语句


1.(2012辽宁)执行如图所示的程序框图,则输出的S值是 ().


A.-1 B.3(2) C.2(3) D.4
2.如图给出的是计算2(1)+4(1)+6(1)+…+20(1)的值的一个程序框图,其中判断框内应填入的条件是 ().


A.i>10? B.i<10?
C.i>20? D.i<20?
3.某客运部门规定甲、乙两地之间旅客托运行李的费用为:不超过25 kg按0.5元/kg收费,超过25 kg的部分按0.8元/kg收费,计算收费的程序框图如图所示,则①②处应填 ().


A.y=0.8x y=0.5x


B.y=0.5x y=0.8x
C.y=250.5+(x-25)0.8 y=0.5x
D.y=250.5+0.8x y=0.8x
4.运行右图所示的程序框图,若输出结果为7(13),则判断框中应该填的条件是().
A.k>5B.k>6
C.k>7D.k>8
二、填空题(每小题5分,共25分)


5.阅读如图所示的程序框图,运行相应的程序,输出的s值等于________.
6.阅读如图所示的程序框图,运行相应的程序,输出的结果s=________.


温故知 新第十天 抽样方法与总体分布的估计


1. 对某商店一个月内每天的顾客人数进行了统计, 得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是 ().
A.46,45,56B.46,45,53
C.47,45,56D.45,47,53
2.(2013成都模拟)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为().
A.101 B.808 C.1 212 D.2 012


3.某学校为了解学生数学课程的学习情况,在1 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图可估计这1 000名学生在该次数学考试中成绩不低于60分的学生人数是________.


4.已知某单位有50名职工,现要从中抽取10名 职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组内抽取的编号依次增加5进行系统抽样.


(1) 若第5组抽出的号码为22,写出所有被抽出职工的号码;
(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;
(3)在(2)的条件下,从这10名职工中随机抽取两名体重不轻于73公斤(≥73公斤)的职工,求体重为76公斤的职工被抽取到的概率.


温故知新 第十一天 变量间的相关关系与统计案例
1.已知x,y取值如下表:
x
0
1
4
5
6
8
y
1.3
1.8
5.6
6.1
7.4
9.3
从所得的散点图分析可知:y与x线性相关,且^(y)=0.95x+a,则a=().