对称教学反思
本节课的教学策略是通过学生自己动手折叠、思考、交流等操作活动,让学生亲身经历知识的发生、发展及其探求过程,再者通过教师演示动态课件及引导,让学生感受圆的对称性;并得出弧、弦、圆心角的三者之间的关系;掌握圆的旋转对称性、中心对称性和轴对称性;并能运用圆的对称性研究圆中的圆心角、弧、弦间的关系,并能解决圆的简单的问题 。同时注重培养学生的探索能力和简单的逻辑推理能力 。体验数学的生活性、趣味性,更进一步感受圆的美,激发他们的学习兴趣 。
具体的教学过程如下
一、情景创设:
(1)中秋博饼是我们厦门风俗习惯,博完饼后,怎样把状元饼2等分、4等分、8等分给大家享用呢?(2)根据的是圆的什么性质?(3)你还能将它3等分、5等分┈ 等分呢?(根据圆是轴对称图形,任意一条经过圆心的直线都是它的对称轴 。)
反思:通过等分中秋月饼引入圆的轴对称性,把数学问题生活化,激发学生的学习数学兴趣,再者设计(3)让学生产生认知冲突,从而导入本节课的内容圆的旋转对称性 。
二、新课讲解:
问题1:当我们固定圆的圆心,将其绕着圆心O旋转任意一角度时圆有何变化?它说明什么?
反思:让学生思考,教师通过多媒体的动态演示,增强学生直观形象,让学生用语言概括,培养学生概括能力 。
问题2:将如图中的扇形AOB(阴影部分)绕点O逆时针旋转某个角度,
(1)画出旋转之后的图形,比较前后两个图形,
(2)找出相等的角;相等的弦;相等的弧 。
(3)你能发现什么?用文字语言表达这一结论 。
【对称教学反思】(4)在一个圆中,如果弧相等,那么所对的圆心角、所对的弦有什么关系?如果弦相等,那么所对的圆心角、所对的弧又有什么关系?
反思:通过设计四个有梯度的问题,培养学生的发散思维能力及概括能力 。让不同层次学生通过思考,都能有所得 。
(5)应用:例1如图,在⊙O中,(1)如果AB(︵)=CD(︵) 。,找出图中具有相等关系的量 。(2)AC(︵)=BD(︵),如果∠1=45°,求∠2的度数 。
解:因为 AC(︵)=BD(︵),
AC(︵)-BC(︵)=BD(︵)-BC(︵),所以
根据在一个圆中,如果弧相等,那么所对的圆心角相等,可得
∠2=∠1=45° 。
反思:第(1)小题是把课本例题进行变式,此题设计较好,关键是培养学生发散思维能力和圆心角、它所对的弧、所对的弦关系的直接运用能力,让学生通过思考交流,但学生对弧能进行加减还不理解,教师用线段的加减类比地引导学生,这样学生较易接受 。第(2)培养学生合情的推理能力,并强调注意推
- 七年级教学计划怎么写?
- 三年级体育教学计划怎么写?
- 五年级上册音乐教学计划写法怎么样?
- 四年级美术教学计划怎么写?
- 八年级上册物理教学计划怎么写?
- 五年级语文教学计划如何写?
- 初中学校教学工作计划怎么写?
- 六年级期末语文教学工作总结最新怎么写?
- 八年级上册教学计划如何写?
- 七年级上册美术教学计划怎么写?