对称教学反思( 二 )


理的过程的每一步都要有理论依据,理由必须是学过的定义、定理或已知,不能主观臆造 。)
问题3:如何将一个圆3等分、5等分┈ 等分呢?
反思:通过教师几何画板的平台演示,放“慢动作”,让学生一目了然得出要将一个圆 等分,只需将这个圆的圆心角360° 等分即可 。
三、达标反馈:
1、如图,在⊙O中,(1)∠B=∠C,说明AB(︵)=AC(︵)
(2)AB(︵)=AC(︵),∠B=70° 。求∠C度数 。
2、如图,AB是直径,BC(︵)=CD(︵)=DE(︵),∠BOC=40°,求∠AOE的度数 。
3、如图AB是直径,若∠COA=∠DOB=60°,找出与线段OA相等的所有线段;与弧AC相等的所有弧 。
反思:此组的题目较有针对本节课的内容,但有照顾到中下生,但好生可能“吃不饱”,难度可加大 。
四、学习小结:
1、内容小结:
(1)圆的对称性:轴对称、旋转对称 (2)圆心角与它所对的弧、所对的弦之间的关系:这三个量中,若有一个量相等,则其它的量两个量也相等 。
2、方法归纳:利用圆的对称性和圆心角与它所对的弧、所对的弦之间的关系,说明弦、弧、角相等,或可在圆中求一些角的度数,或可将一个圆任意等分等等 。
反思:本节课师生及生生互动良好,课堂气氛活跃,学生能积极思考、发言、交流,利用多媒体劝态演示,使得内容直观形象,再者通过教师点拔,学生掌握较好 。当然也存在上些不足之处,如优等生估计“吃不饱”等等 。

对称教学反思


九年级上册第三章第一节圆的对称性分为3个课时,今天我讲授的是第一课时 。这节课结束了,喜忧掺半,我进行了课后反思,反思如下:
圆的轴对称性、垂径定理是圆的重要性质之一,在圆的有关内容中占有举足轻重的地位,是今后研究圆与直线的位置关系和数量关系的基础,这些知识在日常生活和生产中有广泛的应用,垂径定理反映了圆的重要性质,是证明线段相等、角相等、弧相等的重要依据,因此,它是整节书的重点,理解和证明垂径定理是本节课的难点,尤其学生在证明弧相等时比较吃力,语言表达不好 。在教学中也是一节较难把握的课 。
1、依据学生的实际水平,在课堂上我采用“积极评价”的思想,通过自评互评的方式鼓励学生积极回答问题,找到数学课堂中的自信 。通过自主探索,合作交流的学习方式,培养学生的合作意识,及时反馈学生的学习效果 。在教学设计上重视了现实生活对数学的需要,重视了不同的学生对数学不同的需要,让绝大部分学生都有所得 。在教学中,我注意了前后知识的链接,为学生创设了轻松、愉快、的学习氛围,真正让学生在学习中感悟到了生活中的数学美 。