圆的周长教学设计范文有没有?( 五 )


(2)师:能不能求圆周长时也找到这样的倍数关系呢?
(3)师:测量的圆的什么比较方便呢?生答:半径、直径
(4)师:请学生先画几条长短不一的线段作直径画圆
(5)师:观察自己画的圆你发现了什么?
学生仔细观察分小小组讨论研究圆的周长和直径是否存在倍数关系
(6)师:你估计周长是直径的几倍?
学生猜想:生1:3倍左右,生2:2倍左右,生3:5倍左右
(7)师:你有办法验证吗?学生讨论
演示:用绳绕的方法验证(3倍多一点)
设计意图:学生对于关联知识的迁移是很有经验的,比如平行四边形、三角形、梯形面积的计算都是转化成已学过的图形来推导面积计算公式的,求正方形的周长可以用边长乘以4,圆的周长和直径或者半径有没有这样的关系呢?通过学生画大小不同的圆,让学生感到圆的周长和直径可能有一定的倍数关系,在学生的猜想后,通过绳绕的方法加以证明,使学生确信周长和直径存在着一定的倍数关系,到底是3倍多多少呢?是不是一个固定的数?需要通过比较精确的测量、计算才能证明 。整个过程是让学生通过“猜想——验证”促使学生积极主动探索知识的 。我想“猜想——验证”不仅激发了学生学习的兴趣,而且我认为运用这种数学思想去思考问题正是培养学生创新思想和创新能力的有效途径 。
C、探索问题解决的方法·发现——构建新知
(1)师:你还有别的办法研究圆的周长和直径的关系吗?
(可以用绳绕滚动的办法分别测量一些圆的周长)
(2)学生在小小组内动手操作、测量进行验证
直径(厘米)周长(厘米)周长是直径的几倍
26.23倍多一点
39.13倍多一点
412.93倍多一点
(3)小结
a、圆的周长÷直径=3倍多一点经过科学家精密的测量,计算发现这个3倍多一点是一个固定数叫圆周率3.1415926……是一个无限不循环小数,我们在计算时通常取3.14,用字母л表示,(请学生写一写л)
b、结合圆周率进行爱国主义教育
师生共同推导计算圆的周长公式:(C=лd或C=2лr)
D、运用新知识解决数学问题
(1)学生尝试例题求圆的周长
(2)基本练习(略)
设计意图:通过实践、计算,确认圆的周长是直径的三倍多一些,在实践过程培养学生的合作、交流能力,使学生感受到小组合作形成的合力的作用 。师生共同推导出求圆周长的计算公式,并通过一些基本题的练习使学生形成基本的技能 。
E、评价体验
(1)师:这节课研究了什么?
生1:周长和直径的关系
生2:圆的周长=直径×圆周率,即C=лd或C=2лd
(2)师:(出示一棵古树图片)你能测量它的直径吗?