直线与圆的位置关系教学设计怎么写?( 三 )
请同学们想一想:如果已知直线l与圆的位置关系分别是相离、相切、相交时,圆心O到直线l的距离d与圆的半径r有什么关系
设圆心到直线的距离为d,圆的半径为r 让学生讨论之后再与学生一起总结出: 当直线与圆的位置关系是相离时,dr 当直线与圆的位置关系是相切时,d=r 当直线与圆的位置关系是相交时,d 知识梳理:
直线与圆的位置关系 图形 公共点 d与r的大小关系 相离 没有 r 相切 一个 d=r 相交 两个 d
第 2 页
三、做做练习,巩固知识 抢答,我能行活动:
1、已知圆的直径为13cm,如果直线和圆心的距离分别为 (1)d=4.5cm (2)d=6.5cm (3)d=8cm,
那么直线和圆有几个公共点?为什么?(让个别学生答题) 师:第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?请大家思考后作答:
2、已知圆心和直线的距离为4cm,如果圆和直线的关系分别 为以下情况,那么圆的半径应分别取怎样的值? (1) 相交;(2)相切;(3)相离 。
师:前面两题中直接告诉了我们是直线的问题,而下面的这题是在三角形中解决直线与圆的位置关系,看题: 考考你
3.在Rt△ABC中,C=900,AC=3cm,BC=4cm.(1)以A为圆心,3cm为半径的圆与直线BC的位置关系是 以A为圆心,2cm为半径的圆与直线BC的位置关系是 以A为圆心,3.5cm为半径的圆与直线BC的位置关系是 .师:同样地第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢? (2)以C为圆心,半径r为何值时, ⊙C与 直线AB相切? 相离?相交?
第 3 页 (请同学们思考讨论后,再请个别同学说出答案) 总结:作题时要找出d与r中哪些量在变化,而哪些没有变化的 。
比如日出就是r没有变化而d发生了变化 。不管哪些变了,哪些没有变,
总之d,r和位置关系中,已经两个都可以求第三个量 。
四、联系现实,解决实际
在码头A的北偏东60方向有一个海岛,离该岛中心P的15海里范围内是一个暗礁区 。货船从码头A由西向东方向航行,行驶了18海里到达B,这时岛中心P在北偏东30方向 。若货船不改变航向,问货船会不会进入暗礁区? 让学生完整解答 。
五、归纳总结,形成体系 师:这节课你有何收获? 请个别学生回顾知识,教师再总结完整 。
六、布置作业,课后巩固 分层作业:
1.基础题:作业本(2)P21;
2.自选题: 如图,一热带风暴中心O距A岛为2千米,风暴影响圈的半径为1千米.有一条船从A岛出发沿AB方向航行,问BAO的度数是多少时船就会进入风暴影响圈?
第 4 页
直线与圆的位置关系教学设计怎么写?
一、教材
《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一 。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础 。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质 。
- 神兽|中国十大传统神兽,中国神兽有哪些
- 《自卑与超越》读后感锦集
- 三金|三金算彩礼还是算赠与
- 人与人最舒服的关系:降低期待
- 人与人之间最大的差距:思维模式
- 筐出未来-过去与现在
- 《重写晚明史:朝廷与党争》的读后感大全
- 美丽心灵
- 孔子与论语读后感100字
- 《弗洛伊德的躺椅与尼采的天空》读后感精选